Interior structure models and tidal Love numbers of Titan

نویسندگان

  • F. Sohl
  • H. Hussmann
  • T. Spohn
  • R. D. Lorenz
چکیده

[1] Interior models of a differentiated Titan with an internal ammonia-water ocean and chondritic radiogenic heat production in an undifferentiated rock + iron core have been calculated. We assume thermal and mechanical equilibrium and calculate the structure of the interior as a function of the thickness of an ice I layer on top of the ocean as well as the moment of inertia factor and the tidal Love numbers for comparison with Cassini gravity data. The Love numbers are linearly dependent on the thickness of the ice I shell at constant rheology parameters but decrease by one order of magnitude in the absence of an internal ocean. Ice shell thicknesses are between 90 and 105 km for models with 5 wt.% ammonia and for core densities between 3500 and 4500 kg m . For 15 wt.% ammonia, the shell is 65 to 70 km thick. We use a strongly temperature-dependent viscosity parameterization of convective heat transport and find that the stagnant lid comprises most of the ice I shell. Tidal heating in the warm convective sublayer is of minor importance. The internal ocean is several hundred kilometers thick, and its thickness decreases with increasing thickness of the ice shell. Core sizes vary from 1500 to 1800 km radius with associated moment of inertia factors of 0.30 ± 0.01.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tidal deformation of Ganymede: Sensitivity of Love numbers on the interior structure

Tidal deformation of icy satellites provides crucial information on their subsurface structures. In this study, we investigate the parameter dependence of the tidal displacement and potential Love numbers (i.e., h2 and k2, respectively) of Ganymede. Our results indicate that Love numbers for Ganymede models without a subsurface ocean are not necessarily smaller than those with a subsurface ocea...

متن کامل

The tides of Titan.

We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gr...

متن کامل

Shell thickness variations and the long-wavelength topography of Titan

The long-wavelength topography of Titan has an amplitude larger than that expected from tidal and rotational distortions at its current distance from Saturn. This topography is associated with small gravity anomalies, indicating a high degree of compensation. Both observations can be explained if Titan has a floating, isostatically-compensated ice shell with a spatially-varying thickness. The s...

متن کامل

Interior Structure of Titan

Introduction: Cassini radio science data indicates that Titan is nearly in hydrostatic equilibrium [1]. We have used thermal models [2] and hydrostatic equilibrium theory [3] to derive interior models of Titan. We show as the measurement of the principal quadrupole gravitational coefficient C22 from the Radio Doppler data from Cassini spacecraft will improve our knowledge of the interior struct...

متن کامل

Doppler Measurements of the Quadrupole Moments of Titan

of this satellite (Lorenz 1993). Titan’s interior is equally mysterious. The clues yielded by the basic data—mass, Measurements of the Doppler frequency change in a microwave beam sent to and transponded back from an interplanesize, and density—and by our knowledge of Titan atmotary spacecraft are very sensitive to the quadrupole gravitaspheric composition—largely due to Voyager 1 radio octiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003